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ABSTRACT

In Late Pleistocene North America colonizing hunter-gatherers knapped and used Clovis fluted
projectile points. During their expansion the size and shape of Clovis points changed
significantly. Archaeologists know that cultural drift contributed to this variation, but is it possible
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that this single source could alone generate so much variation so quickly? We present the first of
several experimental studies exploring whether Clovis size and shape variation results in
performance differences, focusing here on how deeply different Clovis point forms penetrate a
target. Our ballistics experiment demonstrates that seven different Clovis point forms penetrated
the same target with different effectiveness. Even after tip cross-sectional perimeter is accounted
for, there are significant differences in penetration depths between two of the point types. These
results are consistent with the hypothesis that Clovis people in different times and places may
have chosen specific attributes to provide them with a selective functional advantage.

Introduction

When compared to the spread of other Pleistocene tech-
nologies, the rapid expansion and geographic reach of
Clovis fluted points across North America is unprece-
dented (Bradley et al, 2010; Eren & Buchanan, 2016;
Meltzer, 2009; Prasciunas & Surovell, 2015; Smallwood
& Jennings, 2015; Waters & Stafford, 2007). The Clovis
point not only spread quickly and extensively, but speci-
mens in different places are broadly similar in terms of
production technology (Eren et al.,, 2015a; Sholts et al.,
2012; Smallwood, 2012; see also Bradley, 1993; Bradley
et al, 2010; Collins, 1999; Morrow, 1995; Tankersley,
2004) and studies of stone raw materials suggest that
Clovis people possessed broad social networks and terri-
torial permeability (Boulanger et al., 2015; Buchanan
et al., 2016; Ellis, 2008, 2011; Holen, 2010; Meltzer,
2009; Seeman, 1994; Speth et al, 2013). Even though
Clovis population density was low, they maintained
social connections with other groups to exchange infor-
mation, resources, and mates for survival (Meltzer, 2002,
2003, 2004). This, however, raises the question: if Clovis
technology or people with Clovis technology spread so
quickly, Clovis networks were so extensive, and points

were made with the same techniques, then why is
there significant size and shape variation in Clovis
point form over space, across time, and in different
environments (Figure 1)? Given the temporal and
spatial scale of the Clovis archaeological record, we
presume cultural drift contributed to this variation, and
several studies have supported this hypothesis (e.g.
Buchanan & Hamilton, 2009; Eren et al., 2015a; Hamilton
& Buchanan, 2009; Meltzer, 2009; Morrow & Morrow,
1999; O'Brien et al., 2014, 2016; Smallwood, 2012); but
is it possible that this single source could alone generate
so much variation so quickly? Or are multiple sources, for
example contributions from both cultural drift + func-
tion, necessary to so rapidly give rise to such variety?
Were Clovis people in different times and places choos-
ing specific functional attributes of their points that
would have provided them with a selective functional
advantage? It is reasonable to predict that hunter-gath-
erers would have closely observed the performance of
their technologies — what worked, what didn’t, what is
lasting longer than usual, and so on. Even if a technologi-
cal mutation that improved a technology’s function was
not intended, further experimentation and positive
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Figure 1. Clovis points across North America possess different forms (i.e. sizes and shapes).

performance feedback would have caused that mutation
to be selected and ultimately fixed in a population’s tech-
nological reperatoire (Thomas et al., 2017, p. 28).
Unfortunately, demonstrating whether or not that
function played a role in the evolution and variation of
Clovis points — or any other stone tool technology -
can be challenging. This challenge primarily stems from
the need to clear three analytical hurdles. To clear the
first hurdle, what we term here the variation problem,
requires quantitatively establishing the range of variation
within a technology over space and time (e.g. Buchanan
et al., 2014; Buchanan & Hamilton, 2009; Eren et al,,
20164a; Lycett, 2008, 2009a, 2009b, 2011; Lycett & von
Cramon-Taubadel, 2008; Morrow & Morrow, 1999;
O’Brien et al., 2014, 2016; Smith et al., 2015). To success-
fully tackle this problem lithic analysts need to acquire
and analyze (Lycett & Chauhan, 2010; O’'Brien, 2010)
large technological datasets spanning the geographic
range and temporal period of the technology in ques-
tion. The second hurdle to clear to make a case for func-
tion-based technological variation is what we term the
contribution problem (Lycett & von Cramon-Taubadel,
2015). Lithic analysts now understand the fact that mul-
tiple sources of variation (both evolutionary and non-
evolutionary) can combine and interact in ways such
that technological variation is in reality the sum of
these sources. To understand the role that function
may or may not be playing in technological variation
requires understanding whether and to what degree
other factors may also be playing significant roles in
that variation. Finally, to move beyond the final hurdle,
what we term the linkage problem, requires direct,
cogent behavioral linkage between technological vari-
ation and functional variation (Meltzer, 1991). As Odell

and Cowan (1986, p. 195) suggested over 30 years ago,
“Despite the undisputed importance of understanding
the properties of essential variables, there has been a
tendency among archaeologists to leap to higher-order
interpretations without close attention to elemental
observation.” This means going beyond suggestions,
assertions, or just-so stories of how a technology “is com-
patible with”, or “may perform well in”, specific circum-
stances, and instead empirically demonstrating via
experiment a technological variant’s functional advan-
tages over other potential options (Eren et al, 2016b;
Meltzer, 1991).

Thus, to support hypotheses asserting the role of
function in technological variation we need to clear all
three hurdles. If starting from scratch, this challenge
may appear daunting, and could take years to success-
fully complete. But the North American Late Pleistocene
Clovis archaeological record, specifically its fluted point
component, is ideal to investigate the influence of func-
tion upon technology because the first two hurdles have
been cleared as a consequence of the work of several
researchers over the past two decades. So, to tease out
the role function or performance characteristics in the
form (size and shape) variation found in Clovis points,
we need to clear the third and final hurdle: the linkage
problem. That is what we present in this study.

The Clovis culture

The Clovis culture (“culture” sensu Mesoudi, 2011) is the
earliest well-defined archaeological complex in North
America dating to ca. 13,500-12,500 calendar years
before present (calBP) (Anderson, 1990; Anderson &
Gillam, 2000; Barton et al,, 2004; Bradley et al, 2010;



Ellis, 2013; Eren & Desjardine, 2015; Gingerich, 2011;
Haynes et al, 1984; Holliday, 2000; Holliday & Miller,
2013; Lepper, 2005; Levine, 1990; Miller & Gingerich,
2013; Steele et al., 1998; Waters et al., 2011a). The rapid
geographic expansion of Clovis and its ubiquity across
North America (Anderson & Faught, 2000; Anderson
et al, 2005; Haynes, 1964; Meltzer, 2009; Prasciunas &
Surovell, 2015; Sanchez, 2001; Waters & Stafford, 2007;
Wormington, 1957), as well as the technology, mobility
patterns, resource procurement, and site size and organ-
ization of its bearers, bespeak a continental human dis-
persal event unrestricted by earlier peoples (Andrews
et al,, 2015; Beck & Jones, 2010; Boulanger et al., 2015;
Ellis, 2008, 2011; Eren, 2013; Eren & Andrews, 2013;
Eren & Buchanan, 2016; Goebel et al., 2008; Goodyear,
1989; Hamilton & Buchanan, 2007; Haynes, 2002;
Huckell & Kilby, 2014; Jennings et al., 2010; Kelly, 1999,
2003; Kelly & Todd, 1988; Kilby, 2015; Kornfeld et al.,
2001; Meltzer, 2002, 2003, 2004, 2009; Morrow &
Morrow, 1999; Prasciunas, 2007; Seeman, 1994; Seeman
et al,, 2013; Smallwood, 2010, 2012; Tankersley, 1994a;
White, 2013, 2014). Despite disagreement over the exist-
ence, extent, and essence of “pre-Clovis” or “older-than-
Clovis” peoples of North America (e.g. Adovasio & Page,
2002; Boulanger & Eren, 2015; Collins et al., 2013; Eren
et al,, 2013a, 2014b, 2015b; Fiedel, 2013; Halligan et al.,
2016; Jenkins et al, 2012; Jennings & Waters, 2014;
Meltzer, 2009; Morrow et al., 2012; O'Brien et al., 2014;
Poinar et al., 2009; Sistiaga et al., 2014; Waters et al.,
2011a, 2011b), the lack of fluted lanceolate stone
points in the Old World suggests that the Clovis point
probably emerged in the New World. If true, this
suggests that there was at least a small “pre-Clovis”
population present to innovate “the first American inven-
tion” before carrying or transferring it across the conti-
nent (Eren & Buchanan, 2016; Goebel et al., 2008;
Krieger, 1954; Meltzer, 2009; Waters & Stafford, 2007).

There are two models for the timing and duration of
the Clovis culture (Eren & Buchanan, 2016). The “short
chronology” model suggests that Clovis lasted as little
as 200-450 years, between 13,125 and 12,925 calBP or
between 13,250 and 12,800 calBP (Waters & Stafford,
2007). The “long chronology” model suggests that the
duration of Clovis could have been as long as 1500
years (Prasciunas & Surovell, 2015). Relative to global
Pleistocene cultures and colonization events, both of
these models are rapid.

Clovis points and point variation

Clovis points are bifacially-flaked specimens that have
parallel to slightly convex sides, a concave base, and
flake-removal scars — termed “flutes” — on one or both

LITHIC TECHNOLOGY e 3

faces that extend on average from the base to about a
third of the way to the tip (Eren & Buchanan, 2016; see
also Bradley, 1993; Bradley et al, 2010; Frison &
Bradley, 1999; Haynes, 1964; Meltzer, 2009; Waters
et al, 2011b). Point flutes are visually distinctive, and
archaeological and experimental studies suggest that
they are costly to knap, often resulting in the breakage
of the point (Meltzer, 1993b; Morrow & Morrow, 1999).
The fluting process resulted in a thin and brittle base
that may have served as a “shock absorber” upon point
impact, redistributing stress and increasing point resili-
ence for the purposes of avoiding breakage (Story
et al, 2019; Thomas et al.,, 2017).

Clovis points could be produced either from raw
nodules or from smaller flake-blanks of siliceous crypto-
crystralline rock-types (Deller & Ellis, 2010; Eren et al.,
2016c¢; Shott, 1993; Wernick, 2015), either directly at or
nearby the parent stone source (e.g. Huckell et al,
2011; Lothrop, 1989; Sanders, 1990; Smallwood, 2010;
Waters et al, 2011a, 2011b) or after the rock was
carried for hundreds of kilometers (Boulanger et al.,
2015; Buchanan et al.,, 2015; Ellis, 2011; Hoard et al,,
1992, 1993; Holen, 2010; Kilby, 2014; Morrow, 1995;
Seeman, 1994; Tankersley, 1989, 1994a). Clovis points
often exhibit impact scars, which is strong observational
evidence they were hafted and functioned as tips of
thrusting and/or projectile weaponry (Kay, 1996).
Current experimental and observational evidence of
micro-fracture features on damaged fluted point tips
suggests that Clovis hunters used spearthrowers (Hutch-
ings, 1997, 2015). Successful experimental use of replica
fluted points in penetrating the hide of deceased ele-
phants is consistent with the idea that they could have
similarly been used to inflict wounds on mammoths
(Frison, 1989; Huckell, 1982). Clovis points have been
found at archaeological sites associated with the
remains of mammoth, mastodon, bison, and possibly a
few other prey species (Grayson & Meltzer, 2015). Analy-
sis of microwear on fluted points indicates that these
items also served as cutting and butchery implements
(Miller, 2013, 2014; Smallwood, 2015), also consistent
with experiments (Frison, 1989; Gingerich & Stanford,
2016; Huckell, 1979).

Early stages of Clovis point manufacture used percus-
sion flaking to strike well prepared, ground, isolated, and
projected platforms (Bradley et al., 2010) to remove
“overface” flakes (Smallwood, 2010), which are flakes
that travel past the midline of the specimen and are
the most efficient way to thin a stone biface (and
occasionally result in overshot flake mistakes, see Eren
et al, 2013a, 2014b). Additionally, these large overface
flakes could themselves be turned into small points or
other tools (Deller & Ellis, 2010; Ellis, 2008; Eren, 2013;
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Prasciunas, 2007; Surovell, 2009; Wernick, 2015; Wilmsen,
1970). Finishing a Clovis point entailed a prehistoric
knapper carefully removing the basal flutes as well as
using pressure flaking to trim, straighten, and sharpen
the edges (Bradley, 1993). Several observational and
guantitative studies of Clovis point production strategies
suggest that these specimens were made with similar
production techniques across North America irrespective
of geographic locality (Eren et al., 2011a, 20153; Eren &
Desjardine, 2015; Sholts et al.,, 2012; Smallwood, 2012;
see also Bradley, 1993; Bradley et al, 2010; Collins,
1999; Morrow, 1995; Tankersley, 2004).

Although Clovis points appear to be made with the
same production technology, numerous studies have
documented differences in their form (size and
shape) across North America (Anderson, 1990; Bucha-
nan et al, 2014; Buchanan & Hamilton, 2009; Eren
et al, 2015a; Hamilton & Buchanan, 2009; Meltzer,
1988, 1993a; Morrow & Morrow, 1999; Sholts et al.,
2012; Smallwood, 2010, 2012; Smith et al, 2015;
Storck & Spiess, 1994; Willig, 1991). What is not
known is if these differences in form are due in
some part to function. In other words, Clovis groups
in distinct times and places may have chosen (not
necessarily consciously) functional attributes of stone
points that would have provided a selective functional
advantage in capturing or processing prey, dealing
with situational contingencies, and increasing overall
tool resilience in local habitats. As early as 1952, Wit-
thoft speculated that Clovis point differences might
be due to function, stating they “appear rather as
diverging traditions, each specializing somewhat in a
different direction”. More recently Buchanan et al.
(2014) suggested that the shape of Clovis points
across the continent is regionally patterned, perhaps
suggesting that shape was adapted to the environ-
mental differences between these regions.

How much, if any, of the form differences docu-
mented in Clovis points is linked to function is cur-
rently unknown. To investigate and answer this
question, we examine this question through the lens
of the three hurdles described above: the variation
problem, the contribution problem, and the linkage
problem.

The variation problem

In order to make a strong case that Clovis point form
differences are due to function, we need to first know
that there is significant variation of Clovis point size
and shape across space and time. While variation in
Clovis point form has been acknowledged for some
time (e.g. Mason, 1962; Meltzer, 1993a; Witthoft, 1952),
only in the past 20 years has this variation been

quantified and subject to robust statistical analysis. The
use of ratios by Morrow and Morrow (1999) and inter-
landmark distances by Buchanan and Hamilton (2009)
showed that aspects of Clovis point morphology varied
over space, while Smallwood (2012) found morphologi-
cal variation in point form amongst sub-regions of South-
eastern North America. More recently, Buchanan et al.
(2014) and Smith et al. (2015) demonstrated statistically
significant differences exist between point shape and
particular regions. These latter studies employed a
powerful suite of shape analysis methods from biology
called geometric morphometrics (GM) to measure a
large sample of points from Clovis assemblages across
North America. Using discriminant function analysis
(DFA) and significance tests, Buchanan et al. (2014)
found points from Western and Eastern North America
were significantly different. They also found that Clovis
points from the Northeast were significantly different
from those of three other Eastern subregions and that
within the West, points from the Northwest were signifi-
cantly different from those from the Southern Plains and
Southwest, and Northern Plains points were different
from Southern Plains points. The work of Smith et al.
(2015) was consistent with these findings, especially for
Clovis points from the Northeast. In sum, the first
hurdle, the variation problem has been cleared.

The contribution problem

In order to make a strong case that Clovis point form
differences are due to function, we also need to under-
stand the role that non-function and non-heritable
factors are playing. With respect to non-functional
factors, several studies have now shown that stochastic
mechanisms (i.e. cultural evolutionary drift) played a sig-
nificant role in Clovis point form. Morrow and Morrow
(1999) attributed the “incremental” changes of Clovis
point metric ratios across North America to drift (see
also Meltzer, 2009); a result Buchanan and Hamilton
(2009) supported a decade later with more robust
inter-landmark morphometrics and statistical analyses.
Focusing specifically on size, Hamilton and Buchanan
(2009) demonstrated that Clovis points across North
America decreased in size at a rate predicted by the
Webber fraction, “suggesting that spatial variation in
Clovis projectile point size is due to drift processes
caused by the accumulation of copying errors over mul-
tiple transmission events”. Most recently, Eren et al.
(2015a) conducted geometric morphometric analyses
of Clovis points from three distinct stone outcrops
within a single, small region — the eastern riverine
subarea of the unglaciated midcontinental United
States (see Lepper, 2005; Tankersley, 1989) - in a study
that controlled for environment. The three point



samples possessed significantly different shapes, but
because the analysis was both intra-regional and
because points from the different outcrops were being
used to exploit overlapping areas within that same
small environment, the differences could not be attribu-
ted to function, but only to drift. Together these analyses
suggest that if function is playing a role in Clovis point
form, it is in addition to, not instead of, stochastic evol-
utionary mechanisms and that some point traits may
have been under the control of function, while others
were subject to drift (Hamilton & Buchanan, 2009,
p. 67; see also Bentley, 2007; Bentley et al., 2004, 2007;
Brantingham, 2003; Eren et al, 2015a; Kuhn, 2012;
Lycett, 2008; Lycett & von Cramon-Taubadel, 2015).

In addition to cultural evolutionary drift there are two
important developmental or ontogenetic factors that
could potentially contribute to Clovis point shape differ-
ences across the continent: differential raw material con-
straints and differential amounts of resharpening (e.g.
Haynes & Huckell, 2007; Miller & Gingerich, 2013; Tan-
kersley, 1994b; Thulman, 2012; White, 2013). With
respect to the raw material differences, it should be
noted that Clovis points are overwhelmingly knapped
on, from the modern archaeologist’s perspective, “high
quality” stone raw materials such as fine-grained chert,
chalcedony, or jasper, as well as non-siliceous but
exceedingly knappable stone such as obsidian (Bucha-
nan et al, 2016). Additionally, several preliminary or
post-hoc evaluations from previously discussed Clovis
point studies have ruled out raw material differences as
a predominant, or even significant, factor in Clovis
point variation (Buchanan et al., 2014; Buchanan & Hamil-
ton, 2009; Eren et al., 2015a; Smallwood, 2012). Finally,
there is now a growing global consensus from archaeo-
logical and experimental evidence that the hypothesis
that lithic raw material necessarily determines artifact
form cannot be supported (Archer & Braun, 2010; Bar-
Yosef et al, 2012; Brantingham et al,, 2000; Clarkson,
2010; Costa, 2010; Ditchfield, 2016; Eren et al.,, 2011b,
2014a; Gurtov et al.,, 2015; Gurtov & Eren, 2014; Lycett
& von Cramon-Taubadel, 2015; Mraz et al., 2019;
Sharon, 2008; Wang et al., 2012).

With respect to differential amounts of Clovis point
resharpening across North America, this factor too
appears to be subsidiary in its influence on overall
Clovis point form at the assemblage level. Like raw
material, point resharpening has been examined in
several analyses and shown to be negligible in its
impact, again at the assemblage level (Buchanan et al.,
2014; Buchanan & Collard, 2010a, 2010b; Buchanan &
Hamilton, 2009; Eren et al, 2015a; Smallwood, 2012).
Shott’s (2010) comparative analysis of Clovis to post-
Clovis points revealed that the latter showed greater
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evidence of resharpening relative to the former. More
recently, Buchanan et al. (2015) used a large sample of
Clovis points from the midcontinent and statistically
examined the currently accepted markers of resharpen-
ing, namely point size, shape, and scar patterning, and
analyzed these markers in relation to each other as
well as to distance to stone source. Their results indicated
that resharpening was not a significant source of Clovis
point variation at the assemblage level. Beyond this,
several observational studies have now demonstrated
that small Clovis points assumed to have been exten-
sively resharpened (hence their small size) were actually
knapped on small flake-blanks to begin with, as opposed
to large chert nodules (Deller & Ellis, 2010; Eren et al.,
2016¢; Shott, 1993; Wernick, 2015). None of this is to
say that individual Clovis points were not resharpened
and that the resharpening may potentially have altered
their shape (although even at the individual specimen
level, resharpening may not have had an impact. For
example, Smallwood (2010, p. 2414) notes that even
when Clovis points were resharpened “their standard
shape was maintained during use and resharpening
events, through which a point typically could be
reduced to a length of less than 50 mm”). Instead, the
consensus of these Clovis point resharpening analyses
is that the presence of individual resharpened points
does not currently appear to skew or overwhelm stylistic
signals on the assemblage level, especially since the
process of resharpening itself may be culturally pat-
terned (Buchanan et al, 2015; Eren & Prendergast,
2008; lovita, 2010; Lycett & von Cramon-Taubadel, 2015).

In sum regarding non-heritable factors, following
Morrow and Morrow (1999, p. 219), it is important to
acknowledge the role of raw material and resharpening,
and to note that they may potentially introduce a small
and unspecified amount of variation in the data. Yet,
there is no evidence to support the idea that they are
substantially or significantly confounding or skewing
overall geo-temporal trends of Clovis point form across
North America.

The linkage problem

Finally, in order to make a strong case that function con-
tributed to Clovis point form differences across North
America, we need to make direct, cogent behavioral
linkage between functional and technological variation
(Buchanan et al., 2014; Eren & Buchanan, 2016; Meltzer,
1991; Mika et al, 2020; Odell & Cowan, 1986). For
example, it has long been proposed that different
point forms are connected with the type of prey targeted
by Clovis hunters in different regions and sub-regions
(Buchanan et al., 2011). Indeed, zooarchaeological evi-
dence suggests western Clovis is associated with
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mammoth and bison whilst eastern Clovis is associated
with smaller, more diverse game (Cannon & Meltzer,
2004; Storck & Spiess, 1994). Thus, a compelling motivat-
ing factor linking technological differences directly to
function would be increased penetrability for western
Clovis point form in order to slice through thicker prey
hides (Buchanan et al.,, 2014). Similarly, given differences
in fauna in distinct North American regions and the need
for people to process these items via cutting or butchery,
as well as the fact that microwear analysis suggests
Clovis points were used as knives, perhaps different
Clovis point forms possess different levels of cutting
efficiency, or robustness during cutting tasks. In one
final example, it is reasonable to propose that Clovis
points found in more open Western environments pos-
sessed forms that were more aerodynamic relative to
those found in the more forested Eastern environments
(Buchanan et al., 2014), whereas Clovis points found in
the forested East possess forms more durable upon
impact given the increased chance of hitting trees.

When viewed in aggregate, the examples in the pre-
vious paragraph point to the fact that if function
played a role in Clovis point form differences across
North America, then there should be differences in task
performance among distinct point forms. How can we
determine the relative functionality, efficiency, and effec-
tiveness of different Clovis point forms in performance
tasks and move beyond the current “interpretive stale-
mate” (Shea et al., 2001, p. 808) of function’s contribution
to those differences? Lithic analysts, especially those
focusing on stone weaponry and projectile technology,
have long used experiments involving replica points to
understand the performance characteristics of archaeo-
logical ones (see references and discussion in Eren
et al,, 2016b and Knecht, 1997; see also Bergman & New-
comer, 1983; Broglio et al., 1993; Cheshier & Kelly, 2006;
Christenson, 1986; Fischer, 1985; Frison, 1989; Huckell,
1982; Hunzicker, 2008; Hutchings, 1997, 2011, 2015;
lovita et al., 2014; Lipo et al, 2012; Lombard et al.,
2004; Lombard & Pargeter, 2008; Odell & Cowan, 1986;
Pettigrew et al, 2015; Sano & Oba, 2015; Shea et al,
2001; Sisk & Shea, 2009; Smith et al., 2007; Titmus &
Woods, 1986; Waguespack et al., 2009; Whittaker, 2010,
2013; Whittaker & Kamp, 2006; Whittaker & Maginniss,
2006; Whittaker & McCall, 2001; Wilkins et al, 2012,
2014), and that is what we are presenting here. By under-
taking a multi-year, multi-function experimental assess-
ment, we have investigated numerous performance
tasks of different Clovis point forms to tease out
whether different forms perform differently.

There are many potential performance attributes to
explore, however, and our focus in this first manuscript
is projectile point penetration depth, a critical factor for

killing prey (Cheshier & Kelly, 2006; Clarkson, 2016; Friis-
Hansen, 1990; Guthrie, 1983; Hughes, 1998; Loendorf
et al, 2017; Mika et al,, 2020; Pargeter, 2007; Salem &
Churchill, 2016; Shea et al,, 2002; Tomka, 2013; Wague-
spack et al., 2009; Wood & Fitzhugh, 2018). Our null
and alternative hypotheses are simple and straightfor-
ward. If function did not contribute to different Clovis
point designs, then we can predict that there will be
no differences in penetration depth among Clovis
points of different form. The implication of this result
is that stochastic mechanisms (i.e. cultural evolutionary
drift) were predominately responsible for the significant
variation of Clovis points across the continent (Hamilton
& Buchanan, 2009; Meltzer, 2009; Morrow & Morrow,
1999). Given the speed with which Clovis points
spread across the continent, this result would also
have implications for how quickly cultural drift can
occur in stone tool technology to cause significant vari-
ation (Eren et al., 2015a), even amongst sparse forager
populations who must maintain tight social networks
to survive (Buchanan et al.,, 2016; Meltzer, 2002, 2003,
2004, 2009). Finally, this result would suggest that the
Clovis point bauplan was flexible enough to function
well in North America’s diverse landscapes and/or that
not enough time had elapsed during the Clovis period
for function to cause adaptive changes in point form
(Buchanan & Hamilton, 2009; Morrow & Morrow, 1999).
Thus, this result would be consistent with the idea
that it was not until post-Clovis periods that points
were potentially adapted to specific functions (e.g.
White, 2013), although this would need to be tested in
future experiments.

Alternatively, if function contributed to Clovis point
design, then we can predict that there will be significant
differences in penetration depth among one or more
Clovis point forms (Buchanan et al, 2014). The impli-
cation of this result is that the significant differences in
Clovis point form across North America were potentially
a result of contributions from both function and cultural
drift. This result would be consistent with the idea that
sparse Clovis populations selected the attributes of
their points that would have provided them the best
chance for effectiveness and efficiency in tool related
tasks such as hunting and butchery.

Materials and methods

Defining Clovis projectile point shape variation
and selecting models

For this study we selected seven Clovis points represent-
ing the extreme bounds of known Clovis point shape to
replicate in stone and use in our experiments. To find the



extremes of Clovis point shape we used the large sample
(n=241) of Clovis points from Buchanan et al.'s (2014)
study. This study examined Clovis points from well-docu-
mented Clovis assemblages from sites geographically
spanning most of North America. A set of 23 landmarks
was used to delineate the outlines of Clovis points in
this sample and geometric morphometric methods
were employed to extract shape variables from this land-
mark dataset (see Buchanan et al., 2014 for a full descrip-
tion of the methods and procedures carried out). To find
the extreme point shapes to replicate we conducted a
principal components analysis (also termed a relative
warp analysis) which resulted in fewer variables than
the original shape dataset (n=46) comprising most of
the shape variation in the data.

Specifically, we concentrated on the first three relative
warps, which accounted for over 93% of the overall
shape variation (Figure 2). We then found the specimens
with the lowest and highest relative warp scores for each
of the first three components. On the first axis, PC1, the
highest score on the first relative warp was 0.1937
which corresponds to a point from the Simon assem-
blage found in Idaho, and the lowest score on the first
relative warp was —0.2368 which corresponds to a
point from the Shoop assemblage found in Pennsylvania.
The shape variation along this axis primarily relates to the
width of points, with narrow points on the positive end
of the PC1 axis and wide points on the negative end of
the PC1 axis. On PC2, the maximum score of 0.056 also
corresponds to a point from the Shoop site (although a

RW3
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Figure 2. Relative warp analysis of the two-dimensional Clovis
point shape variation. The first three relative warps (RW1, RW2,
and RW3) represent 93% of the overall shape variation in the
dataset. The red-filled triangles represent the points at the
extreme ends of the three axes and the center of the distribution,
while the open blue circles represent other Clovis points.

LITHIC TECHNOLOGY e 7

different point than the Shoop point on PC1) and the
minimum score on PC2 is a point from the Vail assem-
blage in Maine. The shape variation along this axis
goes from points with flat bases on the positive end to
points with deeply indented bases on the negative end
of PC2. The point with the maximum score on the PC3
axis is from Anzick in Montana and the minimum PC3
score is from Rummells-Maske in lowa. The shape vari-
ation on this third axis involves the location of
maximum width. Points on the positive end are triangu-
lar with their maximum width near the base and points
on the negative end have their maximum width closer
to the tip and are more ovate in shape. In addition to
the extremes, we replicated the point closest to the
center of the three-dimensional distribution. The point
at the center is lanceolate in form and from the Bull
Brook site in Massachusetts. Together these six speci-
mens and the point that was found closest to the
origin of the three axes comprise the seven replica
points used in the experiment.

The seven replica Clovis points defining the empirical
shape variation in the Clovis dataset also possess sub-
stantial geographic and size variation (Figures 3 and 4).

Production of stone models

Seven types of Clovis projectile point were produced by
Neolithics Flintknapping Supply House (www.neolithics.
com) using Texas Fredericksburg chert (Figure 4a) (see
also Sitton et al,, 2020). First, slabs of chert were cut
out with a rock saw, put in a kiln, and heat-treated to
450 degrees. Then a pattern for each particular point
shape was drawn on the slabs and cut out with a trim
saw. Next, each point-shaped slab was rough ground
with a 30- and, subsequently, a 60-grit diamond wheel,
to produce a typical stone tip’s lenticular shape. Table
1 presents the experimental point measurements.

Hafting of stone models

The projectiles were hafted by Thunderbird Atlatl (www.
thunderbird.com) (Figure 4b). Each stone tip was hafted
to a 1/2 inch ash dowel manufactured in Thunderbird
Atlatl shop. The dowels were milled to fit the various
sizes of stone points. Hemp fiber and Kodak gelatin
based glue dissolved in warm water was used for
hafting the projectiles on to the dowels. A small electric
heated glue pot was used to maintain the correct vis-
cosity of the glue. The method for attaching the stone
points was to first shape the wood to fit the point. The
wood and the stone points were dipped into the glue
pot. Next, a measured amount of fiber was dipped into
the glue pot. The glue was spread evenly on the fiber
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Figure 3. Our seven Clovis experimental points were based off of points from Simon (1), Anzick (2), Rummells-Maske (3), Shoop (4,5),
Vail (6), and Bull Brook (7). Not only do these points possess different forms (sizes and shapes), they also are geographically variable.

and then wrapped over the wood/stone joint by hand.
Care was taken to make sure that there was a good con-
nection free from voids. The glue was allowed to dry for
24 h, inspected, then packaged for delivery. Table 1 pre-
sents the measurements related to hafting.

Experimental procedures

Our experiment here was akin to other ballistics studies
performed at the Kent State University Experimental
Archaeology Laboratory, a controlled indoor setting
(Figure 5) (Bebber et al., 2020; Bebber & Eren, 2018; Key
et al, 2018; Lowe et al., 2019; Mika et al., 2020; Sitton
et al.,, 2020; Werner et al,, 2019). We shot the seven
hafted experimental Clovis points with a 29 lbs. PSE com-
pound bow mounted on a Spot-Hogg Hooter Shooter.
We used a stationary target, which was approximately
1.8 meters from the compound bow. We fired the hafted
specimens into blocks of moist clay containing crystalline
silica, which has been used as an ethical substitute for
meat and tissue in other studies (Bebber et al., 2020;
Caranta & Legrain, 1993; Key et al., 2018; Key & Lycett,
2017; McGorry, 2001; McGorry et al, 2004; Mika et al,,
2020). With respect to target penetration depth, each
of the seven Clovis projectile point forms was shot into
the clay target thirty times. We measured penetration
depth by holding the shaft at the location at which the
shaft was first exposed in the clay target. After removal

of the projectile from the target, we measured the dis-
tance from the person’s fingers to the tip of the point.

We did not control for velocity in our experiment.
Instead, each projectile was pulled to a standardized
bow draw length of 48 cm (Sitton et al., 2020). This pro-
cedure was selected because a prehistoric person would
not have been able to produce more energy to achieve a
greater velocity with a heavier point, nor would they
have necessarily used less energy to achieve a slower vel-
ocity with a lighter point (Sitton et al., 2020). Our velocity
data thus reflect that — given a single hypothetical indi-
vidual firing all seven forms — the more massive projec-
tiles travel slower than the smaller ones. To measure
velocity, we used a Gamma Master Model Shooting
Chronograph throughout the experiment. The Chrono-
graph readings on occasion result in “error” if there is a
change in sunlight, cloud cover, or some other minor
variable. As a result, we recorded a percentage of 30
possible stone point velocity readings per point type
(Table 2; DATA S1). We note that the velocities produced
in our experiment fall well within the range of human
atlatl throwing velocities (Whittaker et al., 2017).

Statistical analysis of penetration depths

We examined penetration depths (n=30) associated with
the seven Clovis point forms representing the three
primary principal components of shape variation in the
overall Clovis point shape distribution described above.
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Figure 4. The morphometric outline and experimental stone counterpart of the seven Clovis point forms (a). The seven point forms are
from Simon (PC1 max, long and narrow); Shoop (PC 1 min, short and wide); Shoop (PC 2 max, short and flat base); Vail (PC 2 min, deep
base); Anzick (PC 3 max, triangular); Rummells-Maske (PC 3 min, ovate); and Bull Brook (center; lanceolate). Each of the seven exper-

imental stone points hafted (b).

To reiterate, these points, although selected based on
shape variation, also represent substantial geographic
and size variation. We first present summary statistics of
the penetration depths for each of the replica points in
the experiment. We then conducted tests of statistical nor-
mality of each set of penetration depths using Shapiro-
Wilk tests to determine if parametric or non-parametric
analyses were required. Following these tests we con-
ducted nonparametric Kruskal-Wallis tests on the set of
penetration depth measures to determine if there is a stat-
istical difference in median penetration depth across the
types. Subsequently, we conducted Mann-Whitney tests
with Bonferroni-controlled p-values to determine which
pairs were significantly different from each other.

Following the overall Kruskal-Wallis test we did an
additional set of tests examining penetration depth
while including point tip cross-section perimeter (TCSP)
in our model. TCSP is calculated as:

N2 -\ 2
Tesp =4,/ (%22) +(“§>

where wyp, and ty, are the width and thickness, respect-
ively, of the point measured at the widest location on the
point. A number of studies have shown analytically that
penetration depth is inversely proportional to TCSP
(Ashby, 2005; Bestul & Hurteau, 2015; Hughes, 1998;
Kneubuehl, 2011; Mika et al., 2020) and controlled exper-
imental work has further verified this (Sitton et al., 2020).
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Table 1. Experimental projectile measurements. Note that point lengths differ slightly from Figure 4 because hundreds of points of

each type were produced.

Total Point Point Point Haft binding Shaft Shaft
projectile length width thickness Haft binding  Haft binding thickness length diameter
Projectile  Point type mass (g) (mm) (mm) (mm) length (mm)  width (mm) (mm) (cm) (mm)
1 Simon 139.30 185.00 40.76 7.06 47.40 41.78 16.56 71.00 12.95
2 Shoop 1 55.60 34.84 21.26 5.83 35.49 21.97 13.61 71.20 11.41
3 Shoop 2 62.40 36.00 20.32 4.90 26.90 20.98 13.41 71.30 11.97
4 Vail 69.90 66.67 28.76 5.25 24.25 31.21 13.58 71.70 12.06
5 Anzick 64.70 70.38 25.65 5.60 24.24 31.72 13.68 71.30 11.41
6 Rummells- 85.90 95.58 37.81 6.87 38.73 35.53 15.12 70.80 11.76
Maske

7 Bull Brook 63.90 64.48 2531 576 40.92 28.58 14.69 71.20 11.90

Note: There was minor production variation present in these specimens. For this experiment we selected only one specimen of each type, and the point measure-
ments of those specimens are presented here. Total projectile mass is the point + shaft + binding. In this, and all tables, Shoop 1 refers to the PC1 minimum
form, and Shoop 2 refers to the PC 2 maximum form.

Figure 5. The experimental set-up included large blocks of clay
(@); a Gamma Master Model Shooting Chronograph (b); a PSE
compound bow (c); a Spot-Hogg Hooter Shooter (d); Sagittarius
bow hunting socks for good luck (e).

We tested the influence of point form and TCSP on pen-
etration depth using a hierarchical, unequal variance,
Bayesian regression model implemented in R 3.6.1 (R
Core Team) with the brms package. This approach was
selected to adjust for the 30 repeat sample experimental
firings within each point form. Weak prior probability dis-
tributions (priors) were assigned to all parameter values
to ensure model fit. The TCSP slope was assigned a
normal (mean=0, SD=10) prior, and intercepts and
standard deviations of the grouping effect were assigned
student t (df =3, mean =0, SD = 10) priors. Final models

Table 2. Velocity summary statistics.

were run with 4 chains for 10,000 iterations. For all par-
ameters t values (@ model diagnostic with expected
value equal to 1) were below 1.01 to ensure model con-
vergence. Chains were inspected visually for sufficient
mixing to ensure that model results were appropriate.
The model has an R-sq of 0.69. (Unfortunately, even
though we had intended for profile view to be con-
trolled, the reality of production did not match our inten-
tions. The points larger in plan-view were also slightly
thicker than the points smaller in plan-view. Thus, to
be on the safe side, it was important to control for TCSA.)

Results

The summary statistics for the penetration depths for the
seven Clovis points in our experiment are presented in
Table 3. The deepest penetration depths are associated
with the two points from Shoop, whereas the long
Simon point had the shallowest average penetration.
Normality tests indicate that only the second Shoop
point’'s sample does not conform to an underlying
normal distribution (Table 4). Given this result we conser-
vatively used nonparametric Kruskal — Wallis tests,
however, the results are qualitatively similar to the para-
metric analyses. The results of the Kruskal-Wallis test are
highly significantly different (Hc [tie corrected]=151.7,
p<0.00).

Subsequent analyses, including Mann-Whitney and
Tukey's Q comparisons, show that four pairs of point
forms have statistically similar penetration depths, all

Projectile Site Velocity sample size  Mean velocity (m/s) Standard deviation ~Minimum velocity Q1 Median Q3  Maximum
1 Simon 19 22.85 2.68 20.70 2170 2212 2249 30.55
2 Shoop 1 12 33.46 4.93 22.39 3527 3557 3583 36.08
3 Shoop 2 22 34.25 1.98 29.84 3346 3375  34.01 38.42
4 Vail 23 32.15 1.1 31.07 3166 3199 3222 37.08
5 Anzick 16 33.38 0.39 32.28 3328 3341 33.58 33.94
6 Rummells-Maske 18 28.86 0.20 2847 2872 2883  29.01 29.18
7 Bull Brook 20 34.29 197 32.55 3296 3346  34.66 37.95




Table 3. Summary statistics of the penetration depths for the seven replica Clovis points.
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Simon Shoop 1 Shoop 2 Vail Anzick Rummells-Maske Bull Brook
Mean 14.27 21.88 2291 18.37 17.87 16.28 18.63
Median 14.05 217 22.35 18.2 18.2 16.45 185
Minimum 1.6 155 19.1 153 14.5 135 15.1
Maximum 16.9 26.3 28.6 234 20.3 184 235
Stand. dev 137 2.36 242 193 132 1.14 1.89
v 9.63 10.77 10.55 10.49 7.36 7.01 10.15
Note: Measurements are in centimeters.
Table 4. Results of Shapiro-Wilk tests for normality in the penetration depth data for each replica Clovis point.

Simon Shoop 1 Shoop 2 Vail Anzick Rummells—Maske Bull Brook

Shapiro-Wilk W 0.958 0.959 0.907 0.955 0.963 0.968 0.982
p 0.2720 0.2921 0.0124 0.229 0.3697 0.4868 0.8698

Table 5. Lower triangle of matrix is results of the Mann—-Whitney Bonferroni-Corrected pairwise comparisons of penetration depths for
replica Clovis point forms (the upper triangle is Tukey’s Q multiple comparisons).

Simon Bull Brook Shoop 1 Shoop 2 Vail Rummells-Maske Anzick
Simon 0 0 0 0 0.001 <0.000
Bull Brook <0.000 <0.000 0 0.998 <0.000 0.676
Shoop 1 <0.000 <0.000 0.3073 <0.000 0 <0.000
Shoop 2 <0.000 <0.000 1 0 0 0
Vail <0.000 1 <0.000 <0.000 <0.000 0.9384
Rummells-Maske <0.000 <0.000 <0.000 <0.000 <0.000 0.016
Anzick <0.000 1 <0.000 <0.000 1 <0.000
other pairs are significantly different (Table 5). The similar a
pairs include the two points from Shoop, the point from s R
Bull Brook and the points from Vail and Anzick, and the :CE)_ 25 1 :E Type
Vail and Anzick points. The Simon point exhibits signifi- K3} s Anzick
cantly less penetration depth than the other point £ . Eull\l/lBrook

- = 20 1 -
forms. Rummells-Maske has on average greater depths g « Shoopi
than Simon, but penetrated significantly less than the *qc'j * Shoop2
other point forms. Anzick is similar to Vail and Bull o) Simon
. . o 154 Vail

Brook, shows deeper penetration than Simon and Rum-
mells-Maske, and less than both Shoop forms. Pen-

etration depths for Bull Brook and Vail are similar to
each other and to Anzick, but are greater compared
with Simon and Rummells-Maske and less than both
Shoop points. While penetration depths for both Shoop
points are similar to each other, they are deeper com-
pared with the other point forms.

TCSP has a strong negative effect on penetration
depth, as expected (slope =—0.17, 95% credible interval
=—0.27, —0.05) (Figure 6; see also Sitton et al., 2020). But,
controlling for TCSP, penetration depth still varied some-
what with point form. Figure 7 shows the posterior distri-
butions after controlling for TCSP. The least penetration
on average was seen in Anzick points (estimate =
—1.73, 95% credible interval=-3.38, —0.18). Anzick
points had the only estimate that differed significantly
from zero. The most penetration on average was seen
in the second Shoop point (estimate = 1.27, 95% credible
interval = —0.84, 3.85), but this credible interval includes

40 50 60 70 80
TCSP

Figure 6. Bivariate plot of Clovis replica point tip cross-section
perimeter and penetration depth with Ordinary Least Squares
best fit line in red (slope=—0.17). Penetration depth is measured
in centimeters.

zero as did all the other point types other than Anzick.
We can infer that the second Shoop point had signifi-
cantly greater penetration than Anzick, and that all the
other point types were intermediate with overlapping
distributions between these two.

Discussion

The focus of our experiment presented here was on one
functional aspect of stone point performance,
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Figure 7. Violin plot of the posterior distributions after control-
ling for TCSP.

penetration depth. Penetration depth is particularly
important as it both increases the probability of impact-
ing major organs, and decreases the probability of a pro-
jectile becoming dislodged in a wounded animal. The
controls of the experiment allowed us to isolate this
single functional outcome and compare it among
seven different replica forms of actual Clovis points
representative of the shape and size variation exhibited
in Clovis points from different regions of North America.

The results of our first set of analyses show that
several of the Clovis point forms exhibit statistically
different penetration depths. This analysis demonstrated
that for a constant input energy and the range of vel-
ocities observed, larger points from Clovis caches, includ-
ing Simon, Rummells-Maske, and Anzick, exhibit
shallower penetration depths, while the smaller points
from the Shoop site penetrate much deeper. Overall,
points from the eastern areas, including both Shoop
forms, Bull Brook, and Vail, have deeper penetration
depths when compared with the points from more
western areas as eastern Clovis points are on average
smaller than western Clovis points.

These results are consistent with the hypothesis that
Clovis point form variation is the result of contributions
from both function and cultural drift. While Clovis point
form evolved via stochastic mechanisms as sparse popu-
lations moved across the continent (Eren et al., 2015a;
Hamilton & Buchanan, 2009; Morrow & Morrow, 1999),
our results showing that different Clovis point forms
perform differently in terms of target penetration

suggest that functional attributes may have also been
selected, further influencing point form (Buchanan
et al, 2014).

Future experiments we report upon will examine
other functional considerations, such as point durability,
haft durability, aerodynamics, and butchery. Thus, while
Clovis point forms varied in terms of penetration
depth, they may exhibit other functional advantages.
As each set of task performance experiments is com-
pleted, we will be able to discuss the advantages, disad-
vantages, and functional compromises of different point
forms, which can then be applied to regional point form
tendencies or point form variation within sites.

In future experiments, it will be important to relax the
assumption of constant input energies and target resist-
ances. For example, it will be important to understand
how penetration is impacted by point size and velocity
across a range of hide thicknesses (and therefore body
sizes). Additionally, it will be important to understand
how the variation of penetration depths within a given
type is impacted by the range of possible velocities
given the physics of the delivery systems over a range
of distances, and likely the variation of the strength
and skill of the users. While future analyses will be
designed to tease out these influences on penetration
depth, our results show that TCSP has a strong relation-
ship with penetration depth (see also Sitton et al., 2020).
These results are interesting because, as demonstrated
by Hamilton and Buchanan (2009), Clovis points get
increasingly smaller - and necessarily possess smaller
TCSP values — over time and from west to east. The
Clovis point size decreases documented by Hamilton
and Buchanan (2009, p. 67) were consistent with the
Weber fraction, suggesting that variation in projectile
point size could be due to drift processes caused by
the accumulation of copying errors over multiple trans-
mission events. Yet, they emphasized that their results
did not suggest that “directional selection never
occurred” (Hamilton & Buchanan, 2009, p. 67). Our
results suggest that it is plausible that Clovis people
selected for performance criteria - in this case decreased
TCSP and increased penetration depth - over time and
across space. To paraphrase Bebber et al. (2017, p. 79),
although we now know smaller points would have a pro-
vided benefit to Clovis hunters, the ultimate source of
that functional benefit, drift or selection, is currently
difficult to pin down.

To begin this examination, we performed a Bayesian
analysis to evaluate differences in penetration depth
while simultaneously accounting for the influence of
TCSP. We did this to examine if any residual aspects of
point form - especially involving plan-view form -
might have functional significance. Indeed, the results



show that while there is much overlap, at least two point
forms, the triangular-shaped point from Anzick and the
short second Shoop point with a flat base, have
different penetration capabilities. The triangular Anzick
point has significantly less penetrating ability than the
second Shoop point. By controlling for TCSP, these
results are consistent with the notion that the 2d plan-
view form of Clovis points can contribute to differences
in functionality. Additional high internal validity analyses
designed to investigate this observation are currently
underway.
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